An IMEX Method for the Euler Equations That Posses Strong Non-Linear Heat Conduction and Stiff Source Terms (Radiation Hydrodynamics)
نویسندگان
چکیده
Here, we present a truly second order time accurate self-consistent IMEX (IMplicit/EXplicit) method for solving the Euler equations that posses strong nonlinear heat conduction and very stiff source terms (Radiation hydrodynamics). This study essentially summarizes our previous and current research related to this subject (Kadioglu & Knoll, 2010; 2011; Kadioglu, Knoll & Lowrie, 2010; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadioglu et al., 2009; Kadioglu, Knoll, Sussman &Martineau, 2010). Implicit/Explicit (IMEX) time integration techniques are commonly used in science and engineering applications (Ascher et al., 1997; 1995; Bates et al., 2001; Kadioglu & Knoll, 2010; 2011; Kadioglu, Knoll, Lowrie & Rauenzahn, 2010; Kadioglu et al., 2009; Khan & Liu, 1994; Kim & Moin, 1985; Lowrie et al., 1999; Ruuth, 1995). These methods are particularly attractive when dealing with physical systems that consist of multiple physics (multi-physics problems such as coupling of neutron dynamics to thermal-hydrolic or to thermal-mechanics in reactors) or fluid dynamics problems that exhibit multiple time scales such as advection-diffusion, reaction-diffusion, or advection-diffusion-reaction problems. In general, governing equations for these kinds of systems consist of stiff and non-stiff terms. This poses numerical challenges in regards to time integrations, since most of the temporal numerical methods are designed specific for either stiff or non-stiff problems. Numerical methods that can handle both physical behaviors are often referred to as IMEX methods. A typical IMEX method isolates the stiff and non-stiff parts of the governing system and employs an explicit discretization strategy that solves the non-stiff part and an implicit technique that solves the stiff part of the problem. This standard IMEX approach can be summarized by considering a simple prototype model. Let us consider the following scalar model ut = f (u) + g(u), (1)
منابع مشابه
A Jacobian-Free Newton Krylov Implicit-Explicit Time Integration Method for Incompressible Flow Problems
We have introduced a fully second order IMplicit/EXplicit (IMEX) time integration technique for solving the compressible Euler equations plus nonlinear heat conduction problems (also known as the radiation hydrodynamics problems) in Kadioglu et al., J. Comp. Physics [22, 24]. In this paper, we study the implications when this method is applied to the incompressible Navier-Stokes (N-S) equations...
متن کاملInvestigation of the Effects of Non-Linear and Non-Homogeneous Non-Fourier Heat Conduction Equations on Temperature Distribution in a Semi-Infinite Body
In this paper, the non-Fourier heat conduction in a semi-infinite body was examined. The heat wave non-Fourier heat conduction model was used for thermal analysis. Thermal conductivity was assumed temperature-dependent which resulted in a non-linear equation. The heat source was also considered temperature-dependent which resulted in a non-homogeneous equation. The Mac-Cormack predictor-correct...
متن کاملA Paired Quasi-linearization on Magnetohydrodynamic Flow and Heat Transfer of Casson Nanofluid with Hall Effects
Present study explores the effect of Hall current, non-linear radiation, irregular heat source/sink on magnetohydrodynamic flow of Casson nanofluid past a nonlinear stretching sheet. Viscous and Joule dissipation are incorporated in the energy equation. An accurate numerical solution of highly nonlinear partial differential equations, describing the flow, heat and mass transfer...
متن کاملAsymptotic preserving IMEX finite volume schemes for low Mach number Euler equations with gravitation
In this paper we will present and analyse a new class of the IMEX finite volume schemes for the Euler equations with a gravity source term. We will in particular concentrate on a singular limit of weakly compressible flows when the Mach number M ≪ 1. In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gravity waves ...
متن کاملImex Finite Volume Evolution Galerkin Scheme for Three-dimensional Weakly Compressible Flows.∗
In this paper we will derive an implicit-explicit (IMEX) finite volume evolution Galerkin scheme for three-dimensional Euler equations. We will in particular concentrate a singular limit of weakly compressible flows when the Mach number is about O(10−2)−O(10−6). In order to efficiently resolve slow dynamics we split the whole nonlinear system in a stiff linear part governing the acoustic and gr...
متن کامل